Root Approximation ver 2.1

History of Square Root Calculation

No one knows who invented the square root, but it is thought that the knowledge of square
roots originally came from dividing areas of land into equal parts so that the length of the side
of a square became the square root of its area, Pythagoras’ theorem (5th century BCE), when
applied to a right-angled triangle whose sides are 1 unit in length, yields a hypothenuse whose
length is equal to square root of 2. Thus, square root of 2 is a number arising as a measure of
length of a line segment. The discovery that such a number is not a ratio of whole numbers
created a crisis of enormous magnitude for the Pythagoreans. On one hand, it invalidated
many of their geometric proofs, which relied heavily on the assumption that lengths of line
segments were rational numbers; and on the other hand, it shattered their deeply held belief
in the supremacy of whole numbers as the underlying principle of the universe. In addition,
Hippasus, one of Pythagoras’ students, breached their most sacred rules of conduct, he
revealed his discovery of the irrational number square root of 2 thereby breaking his oaths of
both secrecy and individuality. For his sins, legend has it, he was thrown overboard during a
sea voyage. Euclid is known as the Father of Geometry. He lived several years after Pythagoras,
and he continued the work of Pythagoras. Euclid focused mainly on the right angle 3:4:5 ratio
puzzle. Pythagoras and Euclid play a significant symbolic role in Freemasonry.

Before Pythagorus, the Babylonians and Greeks have been credited with the discovery of
Heron’s square root method, the precursor of Newton’s iterative method, although Indian
mathematicians are thought to have used a similar system around 800BC. The Egyptians
calculated square roots using an inverse proportion method as far back as 1650BC. Chinese
mathematical writings from around 200BC show that square roots were being approximated
using an excess and deficiency method. In 1450AD Regiomontanus invented a symbol for a
square root, written as an elaborate R. The square root symbol vV was first used in print in 1525.

Computers have popularized recursive or iterative square root algorithms, such as Newton’s
method, which start with an approximation, or guess, of the square root and find the higher
order digits first. Such iterative methods can be carried out on a computer, but they are
usually difficult to implement for very large numbers and computational difficulty can arise
with the division operation.

The principal square root of most numbers is an irrational number with an infinite decimal
expansion. As a result, the decimal expansion of any such square root can only be computed to
some finite-precision approximation. However, even if we are taking the square root of a
perfect square integer, so that the result does have an exact finite representation, the
procedure used to compute it may only return a series of increasingly accurate approximations.

The most common analytical methods are iterative and consist of two steps: finding a suitable
starting value, followed by iterative refinement until some termination criterion is met. The

starting value can be any number, but fewer iterations will be required the closer it is to the
result. The most familiar such method, most suited for programmatic calculation, is Newton's
method, which is based on a property of the derivative in the calculus. A few methods like
paper-and-pencil synthetic division and series expansion, do not require a starting value. In
some applications, an integer square root is required, which is the square root rounded or
truncated to the nearest integer (such as Heron's method, after the first-century Greek
mathematician Hero of Alexandria who described the method in his AD 60 work Metrica).
Today, nearly all computing devices have a fast and accurate square root function.

Heron's method from first century Egypt was the first ascertainable algorithm for computing
square root. Heron’s method is a first order approximation and can be considered to be

b

+_
VX a2a

Where a? is the closest perfect square to x
and b = x-a%. Thus /X = Va2 + b and the root is fairly accurate for b much smaller than a.

If you are a teacher instructing students in the fine art of object oriented programming, as a
programming exercise, here is a question you could ask: “is it possible to perform common
roots in PHP without using the built-in function or using the traditional iterative methods such
as “Newton’s Method”. The answer is yes.

A non-iterative extension or refinement of Heron’s method follows below.

Non-Iterative Square Root Approximation

b
\/§:a+2—a (1 —2ndO) + 3rdO

Where a is the closest integer square root to x and b = x-a% thus

= yaz+b

The first order approximation is

b

= a+—
VX 2a

The 2" order approximation adds term 2ndO = g

b
: — A2 —
with d=4a*+ 2b (2a+1)

Then letting the 2"? order approximation equal = “u” for /X then
the second order approximation is

a2 (1 >)
~ %722 v b
4¥+2b—()
2a+1
The 3™ order approximation term is
_ x—u?
V= 2 U

adding the 3™ order term results in this egn

V= + o+ = +
2u
X+U2
of

2U
with a typical error of less than 0.000000001 and

2

a maximum error of 0.0000002165 for v12.

Using simple PHP code, the algorithm was tested for various small
and large numbers as listed below. A test sample of a hundred
numbers was executed in less _
. Enter Number to get Root: Calc | Reset

than a second. The PHP code is | @swae et Ooueren
. . . Numbers < 999999999999
listed in the appendix. An

Test Number | Approx Root Approx Square | [J error x10000
Onllne demonstratlon |S 66 8.124038404636 | 66 0.0000000
available from the archive :
https://tinyurl.com/58wzdskc

Square Root Algorithm Test Results 31 5.5677643632236 | 31.0000000044 | 0.000043
Test Approx Root Approximate | Square 8
Numbe Square error 32 5.6568542495753 | 32.0000000009 | 0.000009
0.01r44 0.12 0.0144 0)(()1)(())%%0 33 5.7445626465498 | 33.0000000001 3.000001
0.0145 |0.1204159457879 | 0.0145 8.000000 34 5.8309518948461 | 34 3.000000
0.015 5.1224744871391 0.015 8.000000 35 5.9160797830996 |35 (1).000000
0.0155 g.1244989959798 0.0155 3.000000 36 6 36 3.000000
0.016 3.1264911064067 0.016 3.000000 37 6.0827625302982 | 37 3.000000
0.0165 3.1284523257866 0.0165 g.OOOOOO 38 6.1644140029693 | 38 8.000000
0.0169 3.13 0.0169 g.000000 39 6.244997998401 |39 8.000000
9 3 9 g.OOOOOO 40 6.3245553203476 | 40.0000000001 3.000001
10 3.1622776601972 | 10.0000000002 g.000001 41 6.4031242374628 | 41.0000000004 3.000003
11 3.3166247912733 | 11.0000000061 3.000060 42 6.4807406988738 |42.000000006 3.000060
12 3.4641016463851 |12.0000002165 3.002164 43 6.5574385244578 | 43.000000002 3.000020
13 3.6055512791487 | 13.0000000266 3.000265 44 6.6332495807547 |44.0000000006 3.000005
14 3.7416573869881 | 14.0000000016 ;.000016 45 6.708203932509 |45.0000000001 3.000001
15 3.8729833462096 |15 8.000000 46 6.7823299831267 |46 3.000000
16 4 16 5.000000 47 6.8556546004011 |47 5.000000
17 4.1231056256186 |17 3.000000 48 6.9282032302755 |48 3.000000
18 4.2426406871564 | 18.0000000003 :).000003 49 7 49 8.000000
19 4.358898943797 |19.0000000022 :).000022 50 7.0710678118655 | 50 8.000000
20 4.4721359607024 | 20.000000051 3.000510 51 7.1414284285429 | 51 8.000000
21 4.5825756960792 | 21.0000000103 :).000103 52 7.2111025509284 | 52 8.000000
22 4.6904157599731 | 22.0000000014 g.000014 53 7.2801098892824 |53 (1).000000
23 4.7958315233225 | 23.0000000001 8.000000 54 7.348469228355 |54.0000000001 3.000000
24 4.8989794855665 | 24 3.000000 55 7.416198487108 |55.0000000002 3.000001
25 5 25 8.000000 56 7.4833147737229 | 56.0000000026 3.000026
26 5.0990195135928 |26 8.000000 57 7.549834435339 |57.000000001 5.000010
27 5.1961524227093 | 27 3.000000 58 7.6157731058874 | 58.0000000004 3.000003
28 5.2915026221507 | 28.0000000002 3.000002 59 7.6811457478754 | 59.0000000001 3.000001
29 5.3851648072162 | 29.0000000009 3.000008 60 7.7459666924164 | 60 8.000000
30 5.4772255765088 | 30.000000016 (2.000159 61 7.8102496759069 |61 §.000000

91 9.539392014186 |91.0000000003 8.000003
92 9.5916630466328 |92.0000000001 5.000001
93 9.6436507609959 | 93.0000000001 3.000000
94 9.6953597148337 |94 3.000000
95 9.7467943448093 | 95 5.000000
96 9.7979589711328 | 96 (1).000000
97 9.8488578017961 | 97 8.000000
98 9.8994949366117 | 98 8.000000
99 9.9498743710662 | 99 8.000000
100 10 100 8.000000
101 10.049875621121 | 101 8.000000
102 10.099504938362 (102 8.000000
103 10.148891565092 (103 8.000000
104 10.198039027186 | 104 3.000000
105 10.24695076596 |105 3.000000
106 10.295630140987 | 106 3.000000
107 10.344080432789 (107 3.000000
108 10.392304845414 (108 (1).000000
109 10.440306508912 (109 5.000000
110 10.488088481719 |110.000000000 3.000003
111 10.535653752862 f1111.000000000 8.000001
112 10.583005244263 ?12.000000000 3.000000
113 10.630145812737 :13 3.000000
114 10.677078252032 | 114 3.000000
115 10.723805294764 (115 5.000000
116 10.770329614269 (116 (1).000000
117 10.816653826392 (117 §.000000

62 7.8740078740118 | 62 0.000000
63 7.9372539331938 | 63 8.000000
64 8 64 8.000000
65 8.0622577482985 | 65 8.000000
66 8.124038404636 |66 8.000000
67 8.1853527718725 | 67 g.000000
68 8.2462112512357 | 68 g.000000
69 8.3066238629193 | 69 :).000000
70 8.3666002653436 | 70 3.000000
71 8.4261497731819 | 71.0000000001 3.000000
72 8.4852813743127 | 72.0000000013 3.000012
73 8.54400374535 |73.0000000006 2.000005
74 8.6023252670555 | 74.0000000002 3.000002
75 8.6602540378489 | 75.0000000001 5.000000
76 8.7177978870827 | 76 2.000000
77 8.7749643873924 | 77 5.000000
78 8.8317608663279 | 78 :).000000
79 8.8881944173156 | 79 g.000000
80 8.9442719099992 | 80 g.000000
81 9 81 g.OOOOOO
82 9.0553851381374 | 82 g.OOOOOO
83 9.1104335791443 | 83 g.OOOOOO
84 9.1651513899117 | 84 g.OOOOOO
85 9.219544457293 |85 8.000000
86 9.273618495496 |86 8.000000
87 9.3273790530895 | 87 :).000000
88 9.3808315196484 | 88 :).000000
89 9.4339811320593 | 89.0000000001 3.000000
90 9.4868329805397 | 90.0000000007 g.000006

118 No significant errors > 0.0000000001 beyond

here

The Curious Route 66

"Get Your Kicks on Route 66"* is a popular rhythm and
blues song, composed in 1946. The lyrics relate to a
westward road trip on U.S. Route 66, a highway which
traversed the western two-thirds of the United States

from Chicago, lllinois, to Los Angeles, California. The song
became a standard, with several rendltlons appearmg on
the record charts. It later F=e A
spawned the 1960s TV
series “Route 66” that

Tod and George Maharis [

as Buz and a C1 -

Corvette. The two young adventurers drove the road in
their Corvette for 116 episodes which aired over four
seasons.

The exact root of 66 = 8.124038404635...

The root of 66 can be shown to be exactly equal to:

V66 = 8 + 1
8 + 1 (4)

Since eqgn (4) is an equality there is no error, however it can not
be solved due to the root on the right hand side of the equation,
but a first order approximation from egn (2) can be used:

/66 =a+2
2a

Where a =8 and b = 2, the approximation=8 + 2/16 =8 + 1/8

® Substituting this into equation (4) for the right hand side root
results in the approximate value of the root of 66 as
8.124038462 vs. the exact value of 8.124038404635. An error
of just 0.000000057. And the approximate square =
66.000000093.

Using the third order approximation from the first section
N X+U?
2U

yields an accurate approximation of V66 as 8.124038404636.
The approximate square is 66.00000000000064.

You can now get your kicks with root 66 !.

* Nat King Cole:
https://www.youtube.com/watch?v=ikwPxniT1Rw

https://www.youtube.com/watch?v=ikwPxniT1Rw

Non-Iterative Cube Root Approximation

The cube root approximation follows a similar approach to that
of the square root approximation.

1. Find the closest integer cube

2. Find the first order approximation where a3 is the integer
cube for

X=+ad+b

b

3 a a
3. Then tailoring it using the following logic:

and

X~ a +

a = Integer Root;

b = offset;

Cube=a*a*a+b;

q=b/(3*a*a)

F=a+q;// first order approximation
G=a+(F*q/(F+q));

H = (Cube + G3) /(2 * G*G));

J=(G+H)/2;

K = (Cube +J3) / (2 * J*));

Approximate Cube Root = (2 * K+ (Cube /K * K)) / 3;

Non-Iterative 5th Root Approximation

The fifth root approximation follows a similar approach to that
of the cube root approximation.

1. Find the closest integer fifth power

2. Find the first order approximation where a° is the integer 5%
for

X1/5 — (a5 +b)1/5
and

b

X5 ~a+
baaaa

2. The difficulty here is that “a” must be significantly bigger
than “b” for this to work. And for small values of “x”, a work
around is required by multiplying “x” by a big constant, finding
the root, then dividing by the constant to acquire the answer.
Five to the 5th power (3125) is a convenient constant. In
addition, if “b” is larger than about half the distance to the next
large integer 5™ power then stepping backwards from there vs
forward from the lower integer 5" power improves accuracy.

3. After multiplying by the constant, then using the following
logic (PHP powers are denoted by pow(num,pow) here we are
using carat notation: num”®pow):

a = Integer Root;
b = offset;
fifthPow = 5% power =a * a * a*a*a + b;

g=b/(5*a*a*a*a);

(FO =a+ q; // first order approximation);

However “N” is a better first order approximation for 5" root:
N=a+(1/((1/a)+(1/((@+a)/2)));
R=a+(q*N)/(q+N);

S = (fifthPow + R75) / (2 *R"4);

T=(R+S)/2;

U = (fifthPow + TA5) / (2 * TA4);

V =((4 * U) + (fifthPow / U74)) / powerDivisor;

W=V/5;

Y=a+(1/((1/a)+(1/((U)/2);

Z =Y /powerDivisor;

AprxRoot = (W +72) / 2;

TempVar= (AprxRoot*powerDivisor);

Approximate 5™ power = (TempVar)A5;

Errorfix = (fifthPow - Approximate 5 power)/(5* TempVar4)
Approximate 5"'root = AprxRoot + Errorfix/powerDivisor ;

See the PHP files for specific implementation.

Alternate Source for PHP CODE:
See URL with attached php files:
classRoot66.php
Root66implementation.php

URL: https://tinyurl.com/58wzdskc

