
Root Approximation ver 2.1

History of Square Root Calculation
No one knows who invented the square root, but it is thought that the knowledge of square
roots originally came from dividing areas of land into equal parts so that the length of the side
of a square became the square root of its area, Pythagoras’ theorem (5th century BCE), when
applied to a right-angled triangle whose sides are 1 unit in length, yields a hypothenuse whose
length is equal to square root of 2. Thus, square root of 2 is a number arising as a measure of
length of a line segment. The discovery that such a number is not a ratio of whole numbers
created a crisis of enormous magnitude for the Pythagoreans. On one hand, it invalidated
many of their geometric proofs, which relied heavily on the assumption that lengths of line
segments were rational numbers; and on the other hand, it shattered their deeply held belief
in the supremacy of whole numbers as the underlying principle of the universe. In addition,
Hippasus, one of Pythagoras’ students, breached their most sacred rules of conduct, he
revealed his discovery of the irrational number square root of 2 thereby breaking his oaths of
both secrecy and individuality. For his sins, legend has it, he was thrown overboard during a
sea voyage. Euclid is known as the Father of Geometry. He lived several years after Pythagoras,
and he continued the work of Pythagoras. Euclid focused mainly on the right angle 3:4:5 ratio
puzzle. Pythagoras and Euclid play a significant symbolic role in Freemasonry.

Before Pythagorus, the Babylonians and Greeks have been credited with the discovery of
Heron’s square root method, the precursor of Newton’s iterative method, although Indian
mathematicians are thought to have used a similar system around 800BC. The Egyptians
calculated square roots using an inverse proportion method as far back as 1650BC. Chinese
mathematical writings from around 200BC show that square roots were being approximated
using an excess and deficiency method. In 1450AD Regiomontanus invented a symbol for a
square root, written as an elaborate R. The square root symbol √ was first used in print in 1525.

Computers have popularized recursive or iterative square root algorithms, such as Newton’s
method, which start with an approximation, or guess, of the square root and find the higher
order digits first. Such iterative methods can be carried out on a computer, but they are
usually difficult to implement for very large numbers and computational difficulty can arise
with the division operation.

The principal square root of most numbers is an irrational number with an infinite decimal
expansion. As a result, the decimal expansion of any such square root can only be computed to
some finite-precision approximation. However, even if we are taking the square root of a
perfect square integer, so that the result does have an exact finite representation, the
procedure used to compute it may only return a series of increasingly accurate approximations.

The most common analytical methods are iterative and consist of two steps: finding a suitable
starting value, followed by iterative refinement until some termination criterion is met. The



starting value can be any number, but fewer iterations will be required the closer it is to the
result. The most familiar such method, most suited for programmatic calculation, is Newton's
method, which is based on a property of the derivative in the calculus. A few methods like
paper-and-pencil synthetic division and series expansion, do not require a starting value. In
some applications, an integer square root is required, which is the square root rounded or
truncated to the nearest integer (such as Heron's method, after the first-century Greek
mathematician Hero of Alexandria who described the method in his AD 60 work Metrica).
Today, nearly all computing devices have a fast and accurate square root function.

Heron's method from first century Egypt was the first ascertainable algorithm for computing
square root. Heron’s method is a first order approximation and can be considered to be

x ≅ a +
b
2a

Where a2 is the closest perfect square to x
and b = x-a2 . Thus x = a2 + b and the root is fairly accurate for b much smaller than a.

If you are a teacher instructing students in the fine art of object oriented programming, as a
programming exercise, here is a question you could ask: “is it possible to perform common
roots in PHP without using the built-in function or using the traditional iterative methods such
as “Newton’s Method”. The answer is yes.

A non-iterative extension or refinement of Heron’s method follows below.

Non-Iterative Square Root Approximation
x = a +

b
2a

∗ 1 − 2ndO + 3rdO

Where a is the closest integer square root to x and b = x-a2 thus
x = a2 + b

The first order approximation is

x = a +
b
2a

The 2nd order approximation adds term 2ndO = b
d



with d= 4a2 + 2b – b
2a+1

Then letting the 2nd order approximation equal = “u” for x then
the second order approximation is

� = a +
b
2a ∗ (1 −

b

4a2 + 2b −
b

2a + 1

)

The 3rd order approximation term is

v = x−u2

2∗u
adding the 3rd order term results in this eqn

� = � + � or � = � + x−u2

2u

or � ≅ x+u2

2u
with a typical error of less than 0.000000001 and

a maximum error of 0.0000002165 for 12.

Using simple PHP code, the algorithm was tested for various small
and large numbers as listed below. A test sample of a hundred
numbers was executed in less
than a second. The PHP code is
listed in the appendix. An
online demonstration is
available from the archive :
https://tinyurl.com/58wzdskc



Square Root Algorithm Test Results
Test

Numbe
r

Approx Root Approximate
Square

Square
error
x1000:

0.0144 0.12 0.0144 0.000000
0

0.0145 0.1204159457879
2

0.0145 0.000000
0

0.015 0.1224744871391
6

0.015 0.000000
0

0.0155 0.1244989959798
9

0.0155 0.000000
0

0.016 0.1264911064067
4

0.016 0.000000
0

0.0165 0.1284523257866
5

0.0165 0.000000
0

0.0169 0.13 0.0169 0.000000
0

9 3 9 0.000000
0

10 3.1622776601972 10.0000000002 0.000001
8

11 3.3166247912733 11.0000000061 0.000060
9

12 3.4641016463851 12.0000002165 0.002164
9

13 3.6055512791487 13.0000000266 0.000265
7

14 3.7416573869881 14.0000000016 0.000016
0

15 3.8729833462096 15 0.000000
2

16 4 16 0.000000
0

17 4.1231056256186 17 0.000000
1

18 4.2426406871564 18.0000000003 0.000003
1

19 4.358898943797 19.0000000022 0.000022
3

20 4.4721359607024 20.000000051 0.000510
1

21 4.5825756960792 21.0000000103 0.000103
0

22 4.6904157599731 22.0000000014 0.000014
0

23 4.7958315233225 23.0000000001 0.000000
9

24 4.8989794855665 24 0.000000
0

25 5 25 0.000000
0

26 5.0990195135928 26 0.000000
0

27 5.1961524227093 27 0.000000
3

28 5.2915026221507 28.0000000002 0.000002
3

29 5.3851648072162 29.0000000009 0.000008
8

30 5.4772255765088 30.000000016 0.000159
6

31 5.5677643632236 31.0000000044 0.000043
8

32 5.6568542495753 32.0000000009 0.000009
4

33 5.7445626465498 33.0000000001 0.000001
4

34 5.8309518948461 34 0.000000
1

35 5.9160797830996 35 0.000000
0

36 6 36 0.000000
0

37 6.0827625302982 37 0.000000
0

38 6.1644140029693 38 0.000000
0

39 6.244997998401 39 0.000000
3

40 6.3245553203476 40.0000000001 0.000001
4

41 6.4031242374628 41.0000000004 0.000003
8

42 6.4807406988738 42.000000006 0.000060
4

43 6.5574385244578 43.000000002 0.000020
4

44 6.6332495807547 44.0000000006 0.000005
8

45 6.708203932509 45.0000000001 0.000001
3

46 6.7823299831267 46 0.000000
2

47 6.8556546004011 47 0.000000
0

48 6.9282032302755 48 0.000000
0

49 7 49 0.000000
0

50 7.0710678118655 50 0.000000
0

51 7.1414284285429 51 0.000000
0

52 7.2111025509284 52 0.000000
1

53 7.2801098892824 53 0.000000
3

54 7.348469228355 54.0000000001 0.000000
8

55 7.416198487108 55.0000000002 0.000001
8

56 7.4833147737229 56.0000000026 0.000026
2

57 7.549834435339 57.000000001 0.000010
3

58 7.6157731058874 58.0000000004 0.000003
6

59 7.6811457478754 59.0000000001 0.000001
0

60 7.7459666924164 60 0.000000
2

61 7.8102496759069 61 0.000000
0



62 7.8740078740118 62 0.000000
0

63 7.9372539331938 63 0.000000
0

64 8 64 0.000000
0

65 8.0622577482985 65 0.000000
0

66 8.124038404636 66 0.000000
0

67 8.1853527718725 67 0.000000
0

68 8.2462112512357 68 0.000000
1

69 8.3066238629193 69 0.000000
2

70 8.3666002653436 70 0.000000
5

71 8.4261497731819 71.0000000001 0.000000
9

72 8.4852813743127 72.0000000013 0.000012
6

73 8.54400374535 73.0000000006 0.000005
5

74 8.6023252670555 74.0000000002 0.000002
2

75 8.6602540378489 75.0000000001 0.000000
8

76 8.7177978870827 76 0.000000
2

77 8.7749643873924 77 0.000000
1

78 8.8317608663279 78 0.000000
0

79 8.8881944173156 79 0.000000
0

80 8.9442719099992 80 0.000000
0

81 9 81 0.000000
0

82 9.0553851381374 82 0.000000
0

83 9.1104335791443 83 0.000000
0

84 9.1651513899117 84 0.000000
0

85 9.219544457293 85 0.000000
0

86 9.273618495496 86 0.000000
1

87 9.3273790530895 87 0.000000
1

88 9.3808315196484 88 0.000000
3

89 9.4339811320593 89.0000000001 0.000000
5

90 9.4868329805397 90.0000000007 0.000006

6
91 9.539392014186 91.0000000003 0.000003

2
92 9.5916630466328 92.0000000001 0.000001

4
93 9.6436507609959 93.0000000001 0.000000

6
94 9.6953597148337 94 0.000000

2
95 9.7467943448093 95 0.000000

1
96 9.7979589711328 96 0.000000

0
97 9.8488578017961 97 0.000000

0
98 9.8994949366117 98 0.000000

0
99 9.9498743710662 99 0.000000

0
100 10 100 0.000000

0
101 10.049875621121 101 0.000000

0
102 10.099504938362 102 0.000000

0
103 10.148891565092 103 0.000000

0
104 10.198039027186 104 0.000000

0
105 10.24695076596 105 0.000000

0
106 10.295630140987 106 0.000000

0
107 10.344080432789 107 0.000000

1
108 10.392304845414 108 0.000000

2
109 10.440306508912 109 0.000000

3
110 10.488088481719 110.000000000

4
0.000003
6

111 10.535653752862 111.000000000
2

0.000001
9

112 10.583005244263 112.000000000
1

0.000000
9

113 10.630145812737 113 0.000000
4

114 10.677078252032 114 0.000000
2

115 10.723805294764 115 0.000000
1

116 10.770329614269 116 0.000000
0

117 10.816653826392 117 0.000000
0

118 No significant errors > 0.0000000001 beyond
here



The Curious Route 66
"Get Your Kicks on Route 66"* is a popular rhythm and
blues song, composed in 1946. The lyrics relate to a
westward road trip on U.S. Route 66, a highway which
traversed the western two-thirds of the United States
from Chicago, Illinois, to Los Angeles, California. The song
became a standard, with several renditions appearing on
the record charts. It later
spawned the 1960s TV
series “Route 66” that
featuredMartin Milner as
Tod and George Maharis
as Buz and a C1
Corvette. The two young adventurers drove the road in
their Corvette for 116 episodes which aired over four
seasons.

The exact root of 66 = 8.124038404635...

The root of 66 can be shown to be exactly equal to:

(4)



Since eqn (4) is an equality there is no error, however it can not
be solved due to the root on the right hand side of the equation,
but a first order approximation from eqn (2) can be used:

Where a = 8 and b = 2, the approximation = 8 + 2/16 = 8 + 1/8

 Substituting this into equation (4) for the right hand side root
results in the approximate value of the root of 66 as
8.124038462 vs. the exact value of 8.124038404635. An error
of just 0.000000057. And the approximate square =
66.000000093.

Using the third order approximation from the first section

� ≅ x+u2

2u

yields an accurate approximation of 66 as 8.124038404636.
The approximate square is 66.00000000000064.

You can now get your kicks with root 66 !.

* Nat King Cole:
https://www.youtube.com/watch?v=ikwPxniT1Rw

https://www.youtube.com/watch?v=ikwPxniT1Rw


Non-Iterative Cube Root Approximation
The cube root approximation follows a similar approach to that
of the square root approximation.

1. Find the closest integer cube

2. Find the first order approximation where a3 is the integer
cube for

∛x = a3 + b
and

∛x~ a +
b

3 ∗ a ∗ a
3. Then tailoring it using the following logic:

a = Integer Root;

b = offset;

Cube = a * a * a + b;

q = b / (3 * a * a);

F = a + q; // first order approximation

G = a + (F * q / (F + q));

H = (Cube + G3) / (2 * G*G));

J = (G + H) / 2;

K = (Cube +J3) / (2 * J*J);

Approximate Cube Root = (2 * K + (Cube / K * K)) / 3;



Non-Iterative 5th Root Approximation
The fifth root approximation follows a similar approach to that
of the cube root approximation.

1. Find the closest integer fifth power

2. Find the first order approximation where a5 is the integer 5th

for

X1/5= (a5 +b)1/5
and

X1/5 ~ a + b
5∗a∗a∗a∗a

2. The difficulty here is that “a” must be significantly bigger
than “b” for this to work. And for small values of “x”, a work
around is required by multiplying “x” by a big constant, finding
the root, then dividing by the constant to acquire the answer.
Five to the 5th power (3125) is a convenient constant. In
addition, if “b” is larger than about half the distance to the next
large integer 5Th power then stepping backwards from there vs
forward from the lower integer 5th power improves accuracy.

3. After multiplying by the constant, then using the following
logic (PHP powers are denoted by pow(num,pow) here we are
using carat notation: num^pow):

a = Integer Root;

b = offset;

fifthPow = 5th power = a * a * a*a*a + b;

q = b / (5 * a * a*a*a);



(FO = a + q; // first order approximation);

However “N” is a better first order approximation for 5th root:

N = a + (1 / ((1 / q) + (1 / ((a + q) / 2))));

R = a + (q * N) / (q + N);

S = (fifthPow + R^5) / (2 *R^4);

T = (R + S) / 2;

U = (fifthPow + T^5) / (2 * T^4);

V = ((4 * U) + (fifthPow / U^4)) / powerDivisor;

W = V / 5;

Y = a + (1 / ((1 / q) + (1 / ((U) / 2))));

Z = Y /powerDivisor;

AprxRoot = (W + Z) / 2;

TempVar= (AprxRoot*powerDivisor);

Approximate 5th power = (TempVar)^5;

Errorfix = (fifthPow - Approximate 5th power)/(5* TempVar^4)

Approximate 5throot = AprxRoot + Errorfix/powerDivisor ;

See the PHP files for specific implementation.

Alternate Source for PHP CODE:
See URL with attached php files:
classRoot66.php
Root66Implementation.php
URL: https://tinyurl.com/58wzdskc


